Zanimljivo

Algoritmi u matematici i šire

Algoritmi u matematici i šire

An algoritam u matematici je postupak, opis skupa koraka koji se mogu koristiti za rješavanje matematičkog računanja: ali oni su mnogo češći nego danas. Algoritmi se koriste u mnogim granama znanosti (i svakodnevnom životu po tom pitanju), ali možda je najčešći primjer taj postupak korak po korak koji se koristi u dugoj podjeli.

Proces rješavanja problema poput "što je 73 podijeljeno s 3" može se opisati sljedećim algoritmom:

  • Koliko puta 3 idu u 7?
  • Odgovor je 2
  • Koliko ih je ostalo? 1
  • Stavite 1 (deset) ispred 3.
  • Koliko puta 3 idu u 13?
  • Odgovor je 4, a ostatak je jedan.
  • I naravno, odgovor je 24 s ostatkom 1.

Korak po korak postupak opisan gore naziva se algoritam duge podjele.

Zašto algoritmi?

Iako gornji opis možda zvuči malo detaljan i isprekidan, algoritmi se bave pronalaženjem efikasnih načina za matematiku. Kao što anonimni matematičar kaže, „Matematičari su lijeni pa uvijek traže prečace“. Algoritmi su za pronalaženje tih prečica.

Na primjer, algoritam za množenje na početnoj liniji može jednostavno dodavati isti broj iznova i iznova. Dakle, 3.546 puta 5 moglo bi se opisati u četiri koraka:

  • Koliko je 3546 plus 3546? 7092
  • Koliko je 7092 plus 3546? 10638
  • Koliko je 10638 plus 3546? 14184
  • Koliko je 14184 plus 3546? 17730

Pet puta 3.546 je 17.730. Ali 3.546 pomnoženo sa 654 poduzelo bi 653 koraka. Ko želi stalno dodavati broj iznova? Za to postoji skup algoritama množenja; onaj koji odaberete ovisi o tome koliko je vaš broj. Algoritam je obično najefikasniji (ne uvijek) način da se matematika.

Uobičajeni algebrični primjeri

FOIL (Prvo, Izvana, Iznutra, Zadnji) je algoritam koji se koristi u algebri koji se koristi u množenju polinoma: učenik pamti da riješi polinom izraz u ispravnom redoslijedu:

Da bi se riješio (4x + 6) (x + 2), algoritam FOIL bi bio:

  • Pomnožite prvo izrazi u zagradama (4x puta x = 4x2)
  • Pomnožite dva izraza na napolju (4x puta 2 = 8x)
  • Pomnožite iznutra izrazi (6 puta x = 6x)
  • Pomnožite zadnji termini (6 puta 2 = 12)
  • Dodajte sve rezultate zajedno da biste dobili 4x2 + 14x + 12)

BEDMAS (zagrade, eksponenti, podjela, množenje, zbrajanje i oduzimanje) je još jedan koristan skup koraka i također se smatra formulom. BEDMAS metoda odnosi se na način da se naredi skup matematičkih operacija.

Podučavanje algoritama

Algoritmi imaju važno mjesto u bilo kojem nastavnom programu matematike. Starosne strategije uključuju rotiranje memorije drevnih algoritama; ali moderni učitelji su takođe tokom godina počeli da razvijaju kurikulum kako bi efikasno predavali ideju algoritama, da postoji više načina za rešavanje složenih pitanja, razbijajući ih u skup proceduralnih koraka. Dopuštanje djetetu da kreativno izmišlja načine rješavanja problema poznato je kao razvijanje algoritamskog mišljenja.

Kada nastavnici gledaju kako učenici rade matematiku, veliko pitanje koje im se postavlja je "Možete li smisliti kraći način da to učinite?" Dopuštanje djeci da stvaraju vlastite metode za rješavanje problema produžava njihove razmišljanja i analitičke vještine.

Izvan matematike

Učenje kako operacionalizirati postupke za njihovu efikasniju važnu je vještinu u mnogim područjima. Računarstvo se kontinuirano poboljšava na aritmetičkim i algebarskim jednadžbama kako bi računari radili efikasnije; ali tako rade i kuhari, koji neprestano poboljšavaju svoje procese kako bi napravili najbolji recept za pravljenje supe od leće ili pite od peciva.

Ostali primjeri uključuju internetsko druženje, gdje korisnik ispunjava obrazac o svojim preferencijama i karakteristikama, a algoritam koristi te izbore za odabir savršenog potencijalnog partnera. Računalne video igre koriste algoritme da ispričaju priču: korisnik donosi odluku, a računalo temelji sljedeće korake na toj odluci. GPS sustavi koriste algoritme za uravnoteženje očitanja s nekoliko satelita kako bi identificirali vašu točnu lokaciju i najbolju rutu za vaš SUV. Google koristi algoritam temeljen na vašim pretraživanjima da bi ubacio odgovarajuće oglašavanje u vašem smjeru.

Neki pisci danas 21. vek nazivaju doba algoritama. Oni su danas način da se nose sa ogromnim količinama podataka koje svakodnevno generiramo.

Izvori i dalje čitanje

  • Curcio, Frances R. i Sydney L. Schwartz. "Ne postoje algoritmi za podučavanje algoritama." Nastava djece matematike 5.1 (1998): 26-30. Ispis.
  • Morley, Arthur. "Algoritmi podučavanja i učenja." Za učenje matematike 2.2 (1981): 50-51. Ispis.
  • Rainie, Lee i Janna Anderson. „Ovisno o kodeksu: prednosti i nedostaci doba algoritma.“ Internet i tehnologija. Pew Research Center 2017. Web. Pristupljeno 27. januara 2018.


Pogledajte video: So why do colliding blocks compute pi? (Decembar 2021).

Video, Sitemap-Video, Sitemap-Videos